Utolsó frissítés: 2010-02-19
Tudományos tanulmányok
- > Filippakis, M., Kristály, A., Papageorgiou, NS. (2009): Existence of five nonzero solutions with exact sign for a p-Laplacian equation. — Discrete Cont. Dyn. System 24(2): 405-440. IF: 0,889 (2008) [pdf, 451.3k]
- > Kristály, A. (2009): Asymptotically critical problems on higher-dimensional spheres. — Discrete Cont. Dyn. Systems 23(3): 919-935. IF: 0,889 (2008) [pdf, 288k]
- > Kristály, A., Lazăr, I., Papageorgiou, N.S. (2009): A variational inequality on the half line. — Nonlinear Analysis-TMA 71(10): 5003-5009. IF: 1,295 (2008) [pdf, 466.3k]
- > Kristály, A., Marzantowicz, W., Varga, Cs. (2009): A non-smooth three critical points theorem with applications in differential inclusions. — J. Global. Optim. (megjelenés alatt) IF: 1,062 (2008) [pdf, 236.7k]
- > Kristály, A., Mihăilescu, M., Rădulescu, V. (2009): Two nontrivial solutions for a non-homogeneous Neumann problem: an Orlitz-Sobolev space setting. — P. Roy. Soc. Edinb. — A. 139: 367-379. IF: 0,770 (2008) [pdf, 171.8k]
- > Kristály, A., Papageorgiou, N.S. (2009): Multiple nontrivial solutions for Neumann problems involving the p-Laplacian: a Morse theoretical approach. Adv. Nonlinear Stud. (megjelenés alatt) IF: 0,562 (2008)
- > Kristály, A., Papageorgiou, N.S. (2009): Multiplicity theorems for semilinear elliptic problems depending on a parameter. — P. Edinburgh Math. Soc. 52(1): 171-180. IF: 0,607 (2008) [pdf, 157.4k]
- > Kristály, A., Papageorgiou, N.S., Varga, Cs. (2009): Multiple solutions for a class of Neumann elliptic problems on compact Riemannian manifolds with boundary. Can. Math. Bull. (megjelenés alatt) IF: 0,375 (2008)
- > Kristály, A., Rădulescu, V. (2009): Sublinear eigenvalue problems on compact Riemannian manifolds with applications in Emden-Fowler equations. — Stud. Math. 191(3): 237-246. IF: 0,398 (2008) [pdf, 198.5k]
- > Kristály, A., Varga, Cs. (2009): Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity. — J. Math. Anal. Appl. 352(1): 139-148. IF: 1,046 (2008) [pdf, 166.3k]
- > Kristály, A. (2008): Detection of arbitrarily many solutions for perturbed elliptic problems involving oscillatory terms. — J. Differ. Equations 245(12): 3849-3868. IF: 1,349 [pdf, 223.4k]
- > Kristály, A. (2008): Perturbed Neumann problems with many solutions. — Numer. Func. Anal. Opt. 29(8-9): 1114-1127. IF: 0,465 [pdf, 120.2k]
- > Kristály, A., Lisei, H., Varga, Cs. (2008): Multiple solutions for p-Laplacian type equations. — Nonlinear Anal.-Theor. 68(5): 1375-1381. IF: 1,295 [pdf, 209.1k]
- > Kristály, A., Marzantowicz, W. (2008): Multiplicity of symmetrically distinct sequences of solutions for a quasilinear problem in RN. — Nodea-Nonlinear Diff 15(1-2): 209-216. IF: 0,275 [pdf, 296.1k]
- > Kristály, A., Moroşanu, G., Roth, A. (2008): Optimal placement of a deposit between markets: Riemann-Finsler geometrical approach. — J. Optimiz. Theory App. 139(2): 263-276. IF: 0,860 [pdf, 432.3k]
- > Faraci, F., Kristály, A. (2007): One-dimensional scalar field equations involving an oscillatory nonlinear term. — Discrete Cont. Dyn. Systems 18(1): 107-120. IF: 0,889 [pdf, 224.9k]
- > Kristály, A. (2007): A double eigenvalue problem for Schrodinger equations involving sublinear nonlinearities at infinity. — Electr. J. Differ. Equat. 42(42): 1-11. [pdf, 259.8k]
- > Kristály, A. (2007): Multiple solutions of a sublinear Schrodinger equation. — Nodea-Nonlinear Diff 14(3-4): 291-302. IF: 0,275 [pdf, 193.2k]
- > Kristály, A., Faraci, F. (2007): On an open question of Ricceri concerning a Neumann problem. Glasgow Math. J. 49(2): 189-195. IF: 0,276
- > Kristály, A., Moroşanu, G., Tersian, S. (2007): Quasilinear elliptic problems in RN involving oscillatory nonlinearities. — J. Differ. Equations 235(2): 366-375. IF: 1,349 [pdf, 154.4k]
- > Kristály, A., Motreanu, D. (2007): Nonsmooth Neumann-type problems involving the p-Laplacian. — Numer. Func. Anal. Opt. 28(11-12): 1309-1326. IF: 0,465 [pdf, 140k]
- > Kristály, A., Varga, Cs. (2007): Multiple solutions for elliptic problems with singular and sublinear potentials. — P. Amer. Math. Soc. 135(7): 2121-2126. IF: 0,584 [pdf, 163.8k]
- > Kristály, A., Varga, Cs., Varga, V. (2007): A nonsmooth principle of symmetric criticality and variational-hemivariational inequalities. — J. Math. Anal. Appl. 325(2): 975-986. IF: 1,046 [pdf, 164.8k]
- > Kristály, A. (2006). Infinitely many solutions for a differential inclusion problem in RN. — J. Differ. Equations 220(2): 511-530. IF: 1,349 [pdf, 256.3k]
- > Kristály, A. (2006): Existence of nonzero weak solutions for a class of elliptic variational inclusions systems in RN. — Nonlinear Anal.-Theor. 65(8): 1578-1594. IF: 1,295 [pdf, 284.3k]
- > Kristály, A., Kozma, L. (2006): Metric characterization of Berwald spaces of non-positive flag curvature. — J. Geom. Phys. 56: 1257-1270. IF: 0,987 [pdf, 177.7k]
- > Kristály, A. (2005): Existence of two nontrivial solutions for a class of quasilinear elliptic variational systems on strip-like domain. — P. Edinburgh Math. Soc. 48(2): 465-477. IF: 0,607 [pdf, 198.6k]
- > Kristály, A. (2005): Infinitely many radial and non-radial solutions for a class of hemivariational inequalities. — Rocky Mtj. Math. 35(4): 1173-1190. IF: 0,354 [pdf, 180.4k]
- > Kristály, A. (2005): Multiplicity results for an eigenvalue problem for hemi-variational inequalities in strip-like domains. — Set-Valued Anal. 13(1): 85-103. IF: 0,675 [pdf, 298.3k]
- > Kristály, A., Motreanu, V., Varga, Cs. (2005): A minimax principle with general Palais-Smale conditions. Commun. Appl. Anal. 9(2): 285-299.
- > Kristály, A., Varga, Cs. (2005): On a class of a quasilinear eigenvalue problem in RN. — Math. Nachr. 278(15): 1756-1765. IF: 0,537 [pdf, 191.6k]
- > Kristály, A., Varga, Cs., Varga, V. (2005): An eigenvalue problem for hemivariational inequalities with combined nonlinearities on an infinite strip. — Nonlinear Anal.-Theor. 63(2): 260-277. IF: 1,295 [pdf, 235.9k]
- > Kozma, L., Kristály, A., Varga, Cs. (2004): Critical point theorems on Finsler manifolds. Beitr Algebra Geomet 45(1): 47-59.
- > Kristály, A. (2004): An existence result for gradient-type systems with a non-differentiable term on unbounded strips. - J. Math. Anal. Appl. 299(1): 186-204. IF: 1,046 [pdf, 192.1k]
- > Kristály, A. (2004): Hemivariational inequality systems and applications. Mathematica (Cluj) 46(2):161-168.
- > Kristály, A., Varga, Cs. (2004): A set-valued approach to hemivariational inequalities. Topol. Method. Nonl. Anal. 24(2): 297-306. IF: 0,592
- > Kristály, A.,Varga, Cs., Kozma, L. (2004): The dispersing of geodesics in Berwald spaces of nonpositive flag. — Houston. J. Math. 30(2): 403-420. IF: 0,327 [pdf, 221.7k]
- > Kristály, A., Varga, Cs. (2003): Set-valued versions of Ky Fan’s inequality with application to variational inclusion theory. — J. Math. Anal. Appl. 282(1): 8-20. IF: 1,046 [pdf, 134k]
- > Kristály, A., Varga, Cs. (2002): Cerami (C) condition and mountain pass theorem for multivalued mappings. Serdica Math. J. 28(2): 95-108.
- > Kristály, A., Varga, Cs. (2002): Coercivity of set-valued mapings on metric space. Math. Pannonica 13(2): 241-248.
- > Kozma, L., Kristály, A., Varga, Cs. (2001): Isometry-invariant geodesics with Lipschitz obstacle. - In: Proc. of Conf. on Differential Geometry, Opava. pp. 203-214.
- > Kristály, A., Varga, Cs. (1998): A note on minimax results for continuous functionals. Stud. Univ. Babes-Bolyai Math. 43(3): 35-55.
- > Kristály, A., Varga, Cs. (2001): Coerciveness property for a class of set-valued mappings. Nonlinear Anal. Forum 6(2): 353-362.
- > Kristály, A., Varga, Cs. (2001): Location of min-max critical points for multivalued functionals. Acta Univ. Carol Math. Phys. 42(2): 59-68.
Könyvfejezetek
- > Kristály, A., Varga, Cs. (2003): Critical Points. Lectures on Nonlinear Analysis and its Applications. In: Kassay, G., Kolumbán, J., Kristály, A., Németh, S., Sándor, J., Soós, A., Varga, Cs. (szerk.): Lectures on Nonlinear Analysis and its Applications. Scientia Kiadó, Kolozsvár, pp. 245-332.
Könyvek
- > Kristály, A., Rădulescu, V., Varga, Cs.: Variational Principles in Mathematical Physics, Geometry, and Economics. – Series: Encyclopedia of Mathematics and its Applications 136, Cambridge University Press, Cambridge, UK. [külős hivatkozás]
- > Kristály, A. (2009): A Set-Valued Approach to Critical and Equilibrium Points. — Casa Cărţii de Ştiinţă, Kolozsvár, pp. 140
- > Kristály, A. (2006): Bevezetés a Gazdasági és Pénzügyi Matematikába. Casa Cărţii de Ştiinţă, Kolozsvár, pp. 148
- > Kristály, A., Varga, Cs. (2004): An Introduction to Critical Point Theory for Non-smooth Functions. Casa Cărţii de Ştiinţă, Kolozsvár, pp. 232