Utolsó frissítés: 2010-02-19

Tudományos tanulmányok

  • > Kristály, A., Papageorgiou, N.S. (2009): Multiple nontrivial solutions for Neumann problems involving the p-Laplacian: a Morse theoretical approach. — Adv. Nonlinear Stud. (megjelenés alatt) IF: 0,562 (2008)
  • > Kristály, A., Papageorgiou, N.S., Varga, Cs. (2009): Multiple solutions for a class of Neumann elliptic problems on compact Riemannian manifolds with boundary. — Can. Math. Bull. (megjelenés alatt) IF: 0,375 (2008)
  • > Kristály, A., Faraci, F. (2007): On an open question of Ricceri concerning a Neumann problem. — Glasgow Math. J. 49(2): 189-195. IF: 0,276
  • > Kristály, A., Motreanu, V., Varga, Cs. (2005): A minimax principle with general Palais-Smale conditions. — Commun. Appl. Anal. 9(2): 285-299.
  • > Kozma, L., Kristály, A., Varga, Cs. (2004): Critical point theorems on Finsler manifolds. — Beitr Algebra Geomet 45(1): 47-59.
  • > Kristály, A. (2004): Hemivariational inequality systems and applications. — Mathematica (Cluj) 46(2):161-168.
  • > Kristály, A., Varga, Cs. (2004): A set-valued approach to hemivariational inequalities. — Topol. Method. Nonl. Anal. 24(2): 297-306. IF: 0,592
  • > Kristály, A., Varga, Cs. (2002): Cerami (C) condition and mountain pass theorem for multivalued mappings. — Serdica Math. J. 28(2): 95-108.
  • > Kristály, A., Varga, Cs. (2002): Coercivity of set-valued mapings on metric space. — Math. Pannonica 13(2): 241-248.
  • > Kozma, L., Kristály, A., Varga, Cs. (2001): Isometry-invariant geodesics with Lipschitz obstacle. - In: Proc. of Conf. on Differential Geometry, Opava. pp. 203-214.
  • > Kristály, A., Varga, Cs. (1998): A note on minimax results for continuous functionals. — Stud. Univ. Babes-Bolyai Math. 43(3): 35-55.
  • > Kristály, A., Varga, Cs. (2001): Coerciveness property for a class of set-valued mappings. — Nonlinear Anal. Forum 6(2): 353-362.
  • > Kristály, A., Varga, Cs. (2001): Location of min-max critical points for multivalued functionals. — Acta Univ. Carol Math. Phys. 42(2): 59-68.

Könyvfejezetek

  • > Kristály, A., Varga, Cs. (2003): Critical Points. Lectures on Nonlinear Analysis and its Applications. — In: Kassay, G., Kolumbán, J., Kristály, A., Németh, S., Sándor, J., Soós, A., Varga, Cs. (szerk.): Lectures on Nonlinear Analysis and its Applications. Scientia Kiadó, Kolozsvár, pp. 245-332.

Könyvek

  • > Kristály, A. (2009): A Set-Valued Approach to Critical and Equilibrium Points. — Casa Cărţii de Ştiinţă, Kolozsvár, pp. 140
  • > Kristály, A. (2006): Bevezetés a Gazdasági és Pénzügyi Matematikába. — Casa Cărţii de Ştiinţă, Kolozsvár, pp. 148
  • > Kristály, A., Varga, Cs. (2004): An Introduction to Critical Point Theory for Non-smooth Functions. — Casa Cărţii de Ştiinţă, Kolozsvár, pp. 232